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Genome-wide somatic variant calling using
localized colored de Bruijn graphs
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Reliable detection of somatic variations is of critical importance in cancer research. Here we

present Lancet, an accurate and sensitive somatic variant caller, which detects SNVs and

indels by jointly analyzing reads from tumor and matched normal samples using colored de

Bruijn graphs. We demonstrate, through extensive experimental comparison on synthetic and

real whole-genome sequencing datasets, that Lancet has better accuracy, especially for indel

detection, than widely used somatic callers, such as MuTect, MuTect2, LoFreq, Strelka, and

Strelka2. Lancet features a reliable variant scoring system, which is essential for variant

prioritization, and detects low-frequency mutations without sacrificing the sensitivity to call

longer insertions and deletions empowered by the local-assembly engine. In addition to

genome-wide analysis, Lancet allows inspection of somatic variants in graph space, which

augments the traditional read alignment visualization to help confirm a variant of interest.

Lancet is available as an open-source program at https://github.com/nygenome/lancet.
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Reliable detection of somatic variants from next-generation
sequencing data requires the ability to effectively handle a
broad range of diverse conditions, such as aneuploidy,

clonality, and purity of the input tumor material. The sensitivity
and specificity of any somatic mutation calling approach varies
along the genome due to differences in sequencing read depths,
error rates, mutation types (e.g., single-nucleotide variants—
SNVs, insertions and deletions—indels, copy number variants—
CNVs) and their sizes. Micro-assembly approaches1 have been
successful at calling indels up to a few hundred base pairs in
length, allowing inquiry into the twilight zone between longer
indels and shorter CNVs. However, existing micro-assembly
methods rely on separate assembly of tumor and matched normal
data, which has limitations in regions with low-supporting cov-
erage, repeats, and large indels. Accounting for these variables
requires flexible methods that can adapt to the specific context of
each genomic region.

We here introduce a new somatic SNV and indel caller, Lancet,
which uses localized colored de Bruijn graphs (Fig. 1) to detect
somatic variants with high accuracy in paired tumor and normal
samples. Lancet builds upon the effective assembly engine we
introduced in the Scalpel2 variant caller that localizes the
assembly to small genomic regions. However, unlike Scalpel,
Lancet jointly assembles reads from a tumor and a matched
normal sample into colored de Bruijn graphs that are auto-
matically optimized according to the repeat composition of each
sequence (Supplementary Fig. 1 and Methods section). The
colored de Bruijn graph assembly paradigm was initially intro-
duced and applied to detection and genotyping of both simple
and complex germline variants in a single individual or popula-
tion3. The basic idea was to develop a method of assembling
multiple whole genomes simultaneously, keeping track of the
single individuals from which each k-mers originated. However,
construction and traversal of a colored de Bruijn graph has high
space and time requirements in whole-genome settings. Since
then, most of the related published work has focused on devel-
oping space-efficient implementations of the colored de Bruijn
graph data structure in order to make it feasible to apply this
approach to large population whole-genome sequencing data4–6.
We here demonstrate that this paradigm is even more powerful in
the context of somatic variant detection. Unlike the initial work of
Iqbal et al.3, where the colored de Bruijn graph is constructed for
the whole genome, Lancet builds a local colored de Bruijn graph
in a short genomic region (default 600 bp) following the micro-
assembly paradigm1,2. The local assembly paradigm makes a very
detailed analysis of the graph structure computationally tractable,
allowing the detection of low-frequency mutations private to the
tumor without sacrificing the sensitivity to call longer mutations.
In the Lancet framework, somatic variants correspond to simple
paths in the graph whose nodes (k-mers) belong only to the

tumor. Partially supported variants in the normal sample can be
easily detected and classified as germline variants (Supplementary
Fig. 2).

Among its many features, Lancet employs: an Edmonds–Karp
style network-flow algorithm to efficiently enumerate all haplo-
types in a genomic region; on-the-fly short tandem repeat (STR)
analysis of the sequence context around each variant; a highly
reliable scoring system; carefully tuned filters to prioritize higher
confidence somatic variants; and a simple and efficient active
region module to skip the analysis of genomic regions with no
evidence of variation (Methods section). Finally, in addition to
running the tool in discovery mode, Lancet can be used inter-
actively for an in-depth analysis of a region of interest, similarly
to other bioinformatics utilities used for operating on BAM files,
such as samtools7, bamtools8, bedtools9, etc. Colored de Bruijn
graphs can be easily exported and rendered to visualize variants
of interest in graph space (Fig. 1), which can help in confirming a
variant. This feature complements read alignment visualization
tools such as the integrative genomics viewer (IGV)10 and pro-
vides another useful view into the data that support variant
calling.

Results
Overview of comparisons to Lancet. We performed extensive
experimental comparisons using several synthetic and real-world
datasets designed to assess the variant calling abilities of Lancet
under diverse tumor clonality/cellularity and sequencing condi-
tions on a range of Illumina platforms (HiSeq 2000, HiSeq 2500,
HiSeq X) commonly used for whole-genome sequencing. We
compared Lancet to some of the most widely used somatic variant
callers, including MuTect11, MuTect2, LoFreq12, Strelka13, and
Strelka214. Benchmarking datasets include virtual tumors gener-
ated from real germline sequencing reads, that contain a pre-
defined list of somatic mutations with known variant allele
fractions (VAF); synthetic tumors from the ICGC-TCGA
DREAM mutation calling challenge15; matched tumor and nor-
mal from a medulloblastoma case from the ICGC PedBrain
Tumor project16; and real data from a highly genetically con-
cordant pair of primary and metastatic cancer lesions17.

Virtual tumors. Using a strategy similar to the one described in
the MuTect paper11, we generated virtual tumors by introducing
reads that support real germline SNVs and indels in HapMap
sample NA12892, from an unrelated HapMap sample NA12891,
both sequenced on the Illumina HiSeq X system. Only actual
sequencing data were used to spike-in somatic variants at a ladder
of variant allele fractions at variable loci identified in those
samples as part of the 1000 Genomes Project (Supplementary
Fig. 3 and Methods section). By knowing the true somatic var-
iants and controlling the VAF of inserted mutations, we use the

Fig. 1 Colored de Bruijn illustration. Example of colored de Bruijn graph rendered using Lancet for a short region of 400 bp containing an insertion. Blue
nodes correspond to k-mers shared by both the tumor and the normal samples, red nodes correspond to k-mers private to the tumor, green nodes
correspond to k-mers private to the normal, and white nodes correspond to low coverage k-mers due to sequencing errors
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virtual tumors to test the methods’ ability to call somatic muta-
tions at predefined, including very low, VAFs. Precision/recall
curves of somatic variant calls, sorted by their confidence score,
show that Lancet outperforms all other somatic callers analyzed
in this study on this dataset, especially for indels (Fig. 2a, b). On
this dataset, Lancet behaves close to an (ideal) variant caller that
makes no errors (straight line with precision= 1) demonstrating
a highly reliable scoring system for both SNVs and indels. The
other tools tend to either introduce errors early by assigning high
scores to false positive variants or substantially worsen in preci-
sion at higher recall rates. Although the truth set contains a
handful of somatic STR mutations (Supplementary Fig. 4), ana-
lysis of indels called by each tool shows higher false positive rate
of somatic STR indels for Strelka2, LoFreq, and MuTect2 com-
pared to Lancet and Strelka (Supplementary Fig. 5). When calling
indels, Lancet and Strelka2 demonstrate higher sensitivity (Sup-
plementary Fig. 6a) in particular for variants with VAF < 10%
(Fig. 2d); however, Lancet loses the least amount of precision
compared to the other tools (Fig. 2b). Interestingly, the false
positive STR indels are highly discordant across callers (Supple-
mentary Fig. 6b). All the callers show similar performance in the
detection of indels with VAF > 10%, with the exception of Strelka,
whose sensitivity for indels is comparable to the other methods
only at 20% VAF or above. Excluding LoFreq, all the tools show
similar sensitivity to detect SNVs across the VAF spectrum
(Fig. 2c), however Lancet’s superior accuracy is highlighted in the
precision/recall curve (Fig. 2a).

Finally, Lancet produces by far the best overall F1-score across
all the tested methods on the virtual tumor for indel calling
(Tables 1 and 2). Lancet and Strelka2 achieve the same F1-score
on SNV calling, however Lancet generates half the number of
false positives compared to Strelka2. Analysis of the reference and
alternative allele counts shows great variability in the number of
supporting reads, showing that each tool applies different
methods and filters to estimate the number of reads contributing
to each event. As expected, most false positive indels have few
reads containing the alternative allele; this is largely the case for
Lancet, while other tools (e.g., MuTect2) also report false positives
indels with higher support for the alternative allele, indicating a
problem in selecting/filtering the set of alignments that support
the mutations either in the tumor or the normal (Supplementary
Fig. 7). Strelka has the lowest number of false positive calls but the
distribution of supporting reads highlights its limited power in
detecting indels with very low support.

Synthetic tumors. We performed an additional comparison using
the synthetic tumors from the ICGC-TCGA DREAM mutation
calling challenge #4. This dataset is the most difficult synthetic
tumor generated for the DREAM challenge due to a combination
of complex clonality and cellularity of the tumor sample, which
contained two sub-clones of 30% and 15% allelic fraction. Simi-
larly to the virtual tumors, raw data from a deeply sequenced
sample was randomly sampled into two non-overlapping subsets
of equal size. Then a spectrum of mutations, some randomly
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Fig. 2 Performance of Lancet and other methods on the virtual tumors. a Precision/recall curves for somatic SNVs called by Lancet, MuTect, MuTect2,
LoFreq, Strelka, and Strelka2 on the virtual tumor. Curves are generated by sorting the variants based on the confidence or quality score (QUAL) assigned
by each tool. Each point on the curve corresponds to precision and recall for all the SNVs with confidence score greater than or equal to a specific quality
threshold. The curve for an ideal tool (with no errors) should start from the top left corner (with precision= 1) and produce a straight horizontal line. Any
deviation from a straight line is due to errors introduced by the variant calling process. Specifically, deviations at low recall rates are indicative of low
performance of the scoring system adopted by the tool (false positive variants reported with high score). b Precision/recall curves for somatic indels called
by Lancet, MuTect2, LoFreq, Strelka, and Strelka2 on the virtual tumor. Number of true-positive (c) SNVs and (d) indels at different variant allele fractions
for each method compared to the truth call set
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selected and some targeting known cancer-associated genes, was
introduced in one of the two samples (the tumor), using BAM-
Surgeon (https://github.com/adamewing/bamsurgeon). While
somatic SNVs are spiked in by altering the original reads, in the
case of indels synthetic reads were simulated containing the
desired mutation and used to replace a fraction of the original
reads from the same region. We discovered that the truth set for
this dataset contains many variants with supporting reads coming
only from one strand (thus introducing a strong strand bias), and
for this experiment we turned off Lancet’s strand bias filter. In
real tumors, such strong strand bias is unlikely to happen. Pre-
cision/recall curve analysis (Fig. 3a) together with the precision,
false discovery rate (FDR), and F1-score values (Supplementary
Tables 1 and 2) show that on this dataset Lancet outperforms all
other somatic callers for indel calling. As reported in previous
studies2,18, assembly based methods, such as Lancet and
MuTect2, demonstrate substantially more power to detect indels
of 50 base pairs or longer compared to alignment-based methods
(Fig. 3b). Given the longer size range of indels spiked in this
dataset, we also ran Streka2 in combination with Manta19, which
is the recommended protocol for best somatic indel performance.
This combination is indeed more sensitive to longer indels, but it
is still subject to higher error rate compared to Lancet. Analysis of
the size distribution of called variants outside of STRs shows that
both MuTect2 and LoFreq have strong bias toward calling longer
false positive indels (Fig. 3c). IGV inspection of a random subset
of LoFreq calls on the ICGC-TCGA DREAM data highlights that
the false positive indels are typically due to mis-alignment of the
supporting reads in the normal (Supplementary Fig. 8). Most of
the MuTect2 false positive insertions instead correspond to
breakpoints of larger structural variants that are misinterpreted as
small insertions (Supplementary Fig. 9, 10). For SNV detection,
Lancet shows comparable results to MuTect2, the best performing
method for this dataset (Supplementary Fig. 11). Strelka2 shows
an impressive precision/recall curve for SNVs up to 0.6 recall,
however its precision drops considerably afterwards.

Normal tissue/tumor pair. We next analyzed real data from a
case of medulloblastoma used in the cross-centers benchmarking
exercise of the International Cancer Genome Consortium
(ICGC)16. Unlike the synthetic tumors of the ICGC-TCGA
DREAM mutation calling challenge, no single mutation was
spiked-in, but rather a curated list of somatic mutations (SNVs
and indels) was compiled (the Gold Set). Due to the heterogeneity
of the raw data (multiple library protocols, Illumina sequencers,
read lengths, and fragment sizes), this dataset is particularly noisy
and challenging to analyze. Moreover, differently from the pre-
vious datasets used in this study, the majority of indel calls
contained in the Gold Set are located within STRs. Variant calling
accuracy of all tools is generally inferior in comparison to the
previous benchmarking experiments (Supplementary Fig. 12) but
final precision and recall values are in agreement with the results
reported by the ICGC benchmarking team. Strelka2 and LoFreq
have better precison/recall curves for indels up to 0.5 recall, but
Lancet shows the best final trade-off between precision and recall
(F1-score) and it ranks second in SNV detection, after LoFreq
(Supplementary Tables 3 and 4). Although LoFreq and Strelka2
have higher indel recall rates (Supplementary Tables 3 and
Supplementary Fig. 13b), their final precision is substantially
lower compared to Lancet and Strelka (Supplementary Fig. 13c),
indicating that these tools may have difficulties in handling the
noise in the data. Inspection of the F1-score values, as a function
of recall, shows all callers favor sensitivity over specificity in this
dataset (Supplementary Fig. 14)—indicating that they have likely
been optimized for higher quality data. As is the case with virtual
tumors, false positive indels within STRs are highly discordant
across callers in the medulloblastoma dataset (Supplementary
Fig. 13c, d), thus confirming an overall lower quality of these calls.
In contrast, Lancet reports a very small number of false positive
indels without losing sensitivity (Supplementary Fig. 13b, c).

Normal tissue/primary tumor/metastasis trio. Finally, we ana-
lyzed a pair of highly genetically concordant primary and

Table 1 Somatic indel detection performance on the virtual tumor. Tools sorted in descending order of F1-score

# of calls True positive False positive False negative Recall Precision FDR F1-scorea Max F1-scoreb

Lancet 3891 3586 305 1359 0.72 0.92 0.078 0.81 0.81
Strelka2 4514 3647 867 1298 0.73 0.81 0.192 0.77 0.78
LoFreq 4853 3210 1652 1744 0.64 0.66 0.340 0.65 0.67
MuTect2 4873 2712 2071 2233 0.54 0.56 0.432 0.55 0.58
Strelka 1846 1793 53 3152 0.36 0.97 0.028 0.52 0.71

Bold entries represent the best performing tool on the associated metric
a F1-score: harmonic mean of precision and recall, 2 × (precision × recall)/(precision+ recall)
b Maximum F1-score computed for each combination of precision and recall along the precision/recall curve

Table 2 Somatic SNV detection performance on the virtual tumor. Tools sorted in descending order of F1-score

# of calls True positive False positive False negative Recall Precision FDR F1-scorea Max F1-
scoreb

Lancet 24,413 23,848 565 7744 0.75 0.98 0.023 0.85 0.85
Strelka2 25,249 24,132 1117 7460 0.76 0.96 0.044 0.85 0.85
Strelka 23,891 22,741 1150 8851 0.72 0.95 0.048 0.82 0.82
MuTect 50,228 23,713 2792 7879 0.75 0.89 0.055 0.82 0.82
MuTect2 23,779 20,393 3386 11,199 0.65 0.86 0.142 0.74 0.74
LoFreq 9404 9370 34 22,222 0.3 0.99 0.003 0.46 0.46

Bold entries represent the best performing tool on the associated metric
a F1-score: harmonic mean of precision and recall, 2 × (precision × recall)/(precision+ recall)
b Maximum F1-score computed for each combination of precision and recall along the precision/recall curve
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Fig. 3 Indel performance of Lancet and other methods on the synthetic tumor #4 of the ICGC-TCGA DREAM mutation calling challenge. a Precision/recall
curve analysis of somatic indels called by Lancet, MuTect, MuTect2, LoFreq, Strelka, Strelka2, and Strelka2+Manta. LancetSB is the version of Lancet run
with strand bias filter turned off. b Size distribution of true positive indels for each method. Assembly based methods (Lancet, MuTect2, and Strelka2+
Manta) demonstrate substantially more power to detect longer indels, while alignment-based methods (LoFreq, Strelka, and Strelka2) have reduced power
to detect larger mutations, in particular insertions. c Size distribution of false-positive indels, excluding STRs, plotted separately for each method. LoFreq
false positive indels are mostly due to mis-alignment of the reads supporting the indel in the normal, while most of the MuTect2 false positive insertions
instead correspond to breakpoints of larger structural variants (e.g., inversion, translocations) that are misinterpreted as insertions. Lancet, Strelka and
Strelka2 show the lowest number of false positives although Lancet has superior sensitivity compared to Strelka and Strelka2+Manta on this dataset

Fig. 4 Edmonds–Karp style algorithm for fast enumeration of the haplotypes. An Edmonds–Karp style algorithm for fast enumeration of the haplotypes was
used to reduce the computational requirements of the graph traversal down to polynomial time. Pseudo code for the algorithm is shown here. The
algorithm finds a polynomial size set of paths (plausible haplotypes) from source to sink that cover every edge in the graph (edge and nodes can be visited
more than once)
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metastatic cancer lesions to check the robustness of different
methods to identify shared and private somatic mutations
between the lesions. Concordance of SNVs shared between the
primary and metastasis is much higher compared to indels
among the analyzed tools; however, higher agreement of the
called indels is achieved when indels within STRs are removed
(Supplementary Fig. 15). These results once more highlight the
problem of detecting somatic STRs and emphasize the challen-
ging, but necessary, task of integrating indel calls across different
methods.

Discussion
Across the four datasets analyzed in this study, we discovered that
the major source of disagreement between callers originates from
somatic variants called within STRs, in particular if the motif is
two base pairs or longer. Moreover, Venn diagram analysis shows
substantial disagreement between the callers for the false positive
somatic STR calls. Since the virtual tumors were created by
partitioning the raw reads from a single-real sample, we infer that
the erroneous STR indels are the results of higher replication
slippage at those sites that most tools misclassify as somatic
events. In contrast, thanks to reliable scoring and filtering systems
and the employment of the local assembly engine, Lancet makes
fewer errors at STR sites. Alignment-based tools, such as LoFreq,
are inherently more prone to misclassify longer variants as
somatic. Lancet instead natively corrects for mis-aligned reads
thanks to the joint assembly of the tumor and normal reads in the
same colored de Bruijn data structure, which also provides more
precise estimation of the variant allele fraction. Our extensive
comparative analysis also indicates that somatic callers are now
optimized for higher quality data, although inspection of the max
F1-score values suggests that better performance is achievable on
noisy data with more stringent quality cutoffs.

The key novel feature introduced by Lancet is the usage of
colored de Bruijn graphs to jointly analyze tumor and normal
reads. This strategy substantially increases the accuracy of iden-
tifying mutations, especially indels, private to the tumor. Preci-
sion/recall curve analysis demonstrates that Lancet has a reliable
variant quality scoring system, which is critical for prioritizing
somatic variants. Lancet shows high precision when calling
somatic mutations and provides robust calls across data generated
by different Illumina sequencers. Lancet can reliably detect
deletions up to 400 base pairs in length and insertions shorter
than 200 bp, but its sensitivity is reduced for longer mutations
and structural variations, especially in the case of novel insertions,
tandem duplications, and mobile elements whose reads could be
either unmapped or mapped to a different copy of the repeat.
There are a multiple tools specifically designed to discover these
events, although very few methods natively support the analysis
of tumor and matched normal samples to complement Lancet,
such as TANGRAM20 for mobile element insertion detection and
Delly21, LUMPY22, and Manta19 for more general structural
variant calling. Due to its pure local-assembly strategy, Lancet
currently has longer runtimes compared to alignment-based
methods (Supplementary Table 5), which is an area we plan to
improve upon in the future releases of the tool. In addition to
being used as a genome-wide analysis tool, Lancet can be used
interactively to call variants and render colored de Bruijn graphs
at small genomic regions of interest. In summary, Lancet provides
highly accurate genome-wide somatic variant calling of SNVs and
indels, and, given all its new features, we anticipate Lancet to
become an invaluable resource for the bioinformatics community
working on cancer.

Methods
Lancet workflow. Lancet uses the same local assembly engine initially developed
for the Scalpel variant caller2 but it introduces many new features specifically
designed for somatic analysis of tumor and matched normal next-generation
sequencing data. The algorithm starts by decomposing the whole-genome data
from the input BAM files into overlapping consecutive windows of a few hundred
base pairs (default 600 bp; user adjustable parameter). Each region is then locally
assembled, except repetitive regions that have an excessive number of mapped
reads (default 10,000; user adjustable parameter), using the workflow depicted in
Supplementary Fig. 1. Reads mapping within each region are extracted from the
tumor and normal BAM files and decomposed into k-mers which are then used to
build a colored de Bruijn graph as described in section “Colored de Bruijn graph
construction”. Reads used for the assembly are carefully selected to reduce the
number of possible artifacts in the graph that could confound variant detection.
The details of the read selection process and the various filters applied are described
in section “Read selection”. The graph is initially built using a small k-mer value
(starting with a default of k= 11; user adjustable parameter) which allows incor-
poration of reads supporting very low coverage variants. However, the k-mer
parameter is automatically increased along the scale of odd numbers, to avoid the
presence of perfect and near-perfect repeats (default up to 2 mismatches) in the
graph that can confound variant detection by introducing false bubbles, described
in section “Repeat analysis”. The graph complexity is then reduced by removing
low-coverage nodes, dead-ends, short-links, and by compressing chains of uniquely
linked nodes (section “Graph cleanup”). Once a repeat-free graph has been con-
structed, it is anchored to the reference by selecting one source and one sink node
corresponding to unique k-mers located within the current window. All possible
source-to-sink paths are then efficiently enumerated using an Edmonds–Karp style
algorithm described in section “Paths enumeration”. The assembled sequences
from each path are aligned to the reference window using a sensitive
Smith–Waterman–Gotoh alignment algorithm with affine-gap penalties. Finally,
the alignments are parsed to extract the signature of different mutations (single-
nucleotide variant, insertion, and deletion).

Read selection. Reads aligning to the genome are extracted from the tumor and
normal BAM files and used for local assembly with the exception of the following
set of reads. (1) PCR duplicates marked using the Picard MarkDuplicates module
(https://broadinstitute.github.io/picard)—removing PCR duplicates is necessary to
correctly estimate coverage and support for variant calls. (2) Reads aligned with low
mapping quality (<MP, default 15; user adjustable parameter)—reads with low
mapping quality may be mapped to the wrong genomic location or aligned with
incorrect signature. (3) Reads which are highly likely to be multi-mapped.
Depending on which version of the BWA aligner is employed, there are two ways
to identify these reads. In the case of BWA-MEM, multi-mapped reads are assigned
equal values in the AS and XS tags; however, we slightly relaxed this constraint to
identify reads which are highly likely to be multi-mapped (|AS-XS| ≤ δ, where δ=
5). If BWA-ALN is employed, multi-mapped reads are marked using the XT:Z::R
tag, nonetheless, their mapping quality is not necessarily zero. This is because
mapping quality is computed for the read pair, while XT is only determined from a
single read. For example, when the mate of a read can be mapped unambiguously,
the read can still be mapped confidently and thus assigned a high mapping quality.
In addition to the XT tag, multi-mapped reads are also identified using the XA tag
which is used to list the alternative hits of the read across the genome. Finally, to
maximize the sensitivity to detect variants that are also present in the normal
sample, no filter is applied when extracting the reads aligned to the normal.

Colored de Bruijn graph construction. The key data structure used by Lancet is
the colored de Bruijn graph constructed using the reads from both the tumor and
the matched normal samples. Figure 1 shows an example of the de Bruijn graphs
generated by Lancet. Formally the graph is defined as G (V, E, C), where V is the set
of vertices/nodes corresponding to the different k-mers extracted from the reads, E
is the set of edges connecting two nodes having a k-1 perfect match between their
respective k-mers, and C is the coloring scheme (labels) used to indicate whether
the k-mer has been extracted from the tumor or normal sample. To account for the
double-strandedness of DNA, Lancet constructs a bi-directed de Bruijn graph
where each node stores both forward and reverse complement of each k-mer. The
graph is augmented with ancillary information extracted from the raw sequencing
data, specifically each node stores (i) the k-mer counts split by strand, (ii) the list of
reads where the k-mers were found, and (iii) the Phred quality for each base. The k-
mers from the reference sequence are also extracted and incorporated into the
graph. Sequencing data are typically generated from short-insert paired-end DNA
libraries and the variable fragment size distribution can sometimes cause two
paired reads to overlap each other. Therefore, coverage needs to be adjusted to
avoid over counting the overlapping portion of the two reads. This is easily
accomplished in the de Bruijn graph framework since k-mers extracted from the
overlapping segment come from reads that share the same query template
(QNAME) in the BAM file. If this condition is detected, the k-mer count is
adjusted to only count one copy of the two k-mers.
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Graph clean-up. Sequencing errors, coverage fluctuations, and mapping errors
increase the graph complexity by introducing nodes and edges that confound the
analysis. Lancet utilizes several graph operations and transformations designed to
remove spurious nodes and edges introduced during graph construction. First, low-
coverage nodes, which are typically associated with sequencing errors, are removed
if the corresponding k-mer count is less than or equal to a specific threshold
(default 1; user adjustable parameter) or if the coverage ratio is below a certain
value (default 0.01; user adjustable parameter). Second, dead-ends are removed,
which present themselves as a sequence of uniquely linked nodes that do not
connect back to the graph (also called short tips). Dead-ends formed by n (default
11; user adjustable parameter) or more nodes are removed from the graph. Next
short-links are removed, which are short connections composed by fewer nodes
than theoretically possible given the k-mer value used to build the graph. Sup-
plementary Figure 16 illustrates one exemplary short-link scenario. This type of
connection is typically due to sequence homology between closely located repeats
(e.g., Alu repeats), but it can also happen in the case of long homopolymers, and
other short tandem repeats, where the tandem repetition of the motif can result in
the construction of a tiny bubble in the presence of a heterozygous mutation. Those
tiny bubbles need to be kept in the graph as they may represent true variation,
while short-links like the one depicted in Supplementary Fig. 16 can be safely
removed. Therefore, connections at non-STR sites formed by m (≪ k) or fewer
nodes and whose minimum coverage node is c < √cavg are removed from the graph,
where cavg is the average coverage across the window. Finally, the graph is com-
pressed by merging chains of uniquely linked nodes into super nodes.

Repeat analysis. Small scale repeats are a major challenge for accurate variant
calling, specifically for indels1. To avoid introducing errors at those loci, Lancet
employs the same repeat analysis procedure introduced in the Scalpel algorithm.
Specifically, the sequence composition in each window is analyzed for the presence
of perfect or near-perfect repeats up to a specified number of mismatches (default
2; user adjustable parameter) of size k. Similarly, the graph is inspected for the
presence of cycles (perfect repeats) or near-perfect repeats in any of the source-to-
sink paths. If a repeat structure is detected, a larger k-mer value is selected and the
repeat analysis is performed again on both the reference sequence and the newly
constructed graph, until a repeat-free graph is constructed or the k-mer size has
reached a maximum value (101 by default). To avoid using k-mers which are
reverse complement of their own sequences, only odd values of k are used to build
the graph. This iterative strategy is a key feature of the Lancet algorithm which
automatically selects the optimal k-mer size according to the sequence composition
of each genomic window.

Paths enumeration. Enumerating all possible haplotypes can take time, growing
exponentially with the number of bubbles present in the graph. To reduce the
computational requirements of the graph traversal down to polynomial time, we
employ an Edmonds–Karp style algorithm for fast enumeration of the haplotypes.
The idea behind the algorithm is to find a polynomial size set of paths (plausible
haplotypes) from source to sink that cover every edge in the graph (edge and nodes
can be visited more than once). The pseudo code of the algorithm is presented in
Fig. 4. Since every node is visited (possibly multiple times), it is easy to show that,
although the same variant could be discovered multiple times, no variant is missed
from the analysis. Straightforward complexity analysis of the pseudo code shows
that the worst-case time complexity is O(E2+ EV): at least one edge is visited at
each iteration (step 5) accounting for O(E) time, and each call to the graph tra-
versal (step 2) takes O(E+ V) where E is the number of edges and V the number of
nodes in the graph. As such, a trivial upper bound for the whole procedure is O
(E) × O(E+ V)=O(E2+ EV).

Active regions. The idea behind the active region module is to avoid wasting time
processing (read extraction, local assembly, and re-alignment) regions without
evidence for variation. Regions where all reads map to the reference without any
mismatches can be trivially discarded. However, the error rate of the Illumina
sequencing technology (~0.1%), in combination with high coverage, makes the
scenario of alignments with no mismatches in a region very unlikely. The policy
adopted by Lancet is to consider a region as “active”, either in the tumor or the
normal sample, if a minimum of N (aligned) reads support a mismatch, indel, or
soft-clipped sequence at the same locus (Supplementary Fig. 17), where N is equal
to the minimum alternative count support specified for somatic variants (default 3;
user adjustable parameter). This policy is implemented on the fly by simple and fast
parsing of the MD and CIGAR strings. This step is functionally similar to the active
region module employed in MuTect and other tools, however Lancet follows a pure
assembly approach, where all variant types (SNVs, insertions, and deletions) are
detected through local assembly. When tested on an 80×/40× coverage pair of
tumor/normal samples sequenced with 150 bp reads, Lancet’s active region strategy
discards on average between ~10% and ~20% of the total number of windows.
However, due to its pure assembly strategy, Lancet typically requires higher run-
times compared to the hybrid approach employed by MuTect2 and Strelka2
(Supplementary Table 5). To achieve faster runtimes and to discard more windows,

the parameter N can be increased when analyzing samples sequenced at coverage
higher than 80×/40×.

Scoring variants. Differently from germline mutations, which are expected to be
relatively balanced in their reference and alternative counts, somatic variants are
usually out of balance due to the more challenging characteristics of cancer data
(e.g., aneuploidy, sub-clonality, and purity). Fisher’s Exact test is used to determine
whether a mutation has non-random associations between the allele counts in the
tumor and in the normal samples, which allows for unbalance variants to be scored
more accurately. Specifically, given a somatic mutation, reference, and alternative
reads supporting the variant both in the tumor and the normal are collected and
stored into a 2-by-2 contingency table which is then used to compute a Phred-
scaled Fisher’s exact test score, S(fet), according to the following formula:

S fetð Þ ¼
0 if p ¼ 1

�10 log10 ðpÞ otherwise

�
;

where p is the exact probability of the 2-by-2 contingency table given by the
hypergeometric distribution. However, there are edge cases that could still con-
found the scoring of a variant, for example for a high-coverage dataset in which the
normal has an allele frequency of 1/2 the tumor. In such a scenario, the Fisher’s
exact test would score high the variant while most users would not want to call this
variant as somatic for practical purposes. In Lancet, however, only high-confidence
somatic variants (by default with no reads from the normal supporting the event)
are subject to the FET scoring system and labeled as “SOMATIC” in the output
VCF file. The user however can modify the default behavior by allowing a variant
to be considered as somatic even if supported by a predefined number (or per-
centage) of reads from the normal (using the --max-alt-count-normal and --max-
vaf-normal filtering parameters). This feature is useful when the normal is known
to be “contaminated” with some fraction of the tumor.

Variant filters. Lancet generates the list of mutations in VCF format23 (v4.1). All
variants (SNVs and indels) either shared, private to the tumor, or private to the
normal are exported as part of the output. Following the VCF format best practices,
high-quality variants are labelled as PASS in the FILTER column. Several standard
filters, all of which have tunable parameters, are applied to remove germline calls
and low-quality somatic variants as describe here:

Low/high coverage: mutations located in substantially low-coverage regions of
the normal (default <10) or tumor (default <4) are removed since there is a high
chance for coverage bias toward one of the alleles.

Variant allele fraction: mutations characterized by a very low-variant allele
fraction in the tumor (default <0.04) are filtered because they are likely to be false
positive calls. Likewise, variants whose variant allele fraction is high in the normal
(default >0.0) are considered to be germline calls.

Alternative allele count: analogously to the allele fraction filter, mutations with
low alternative allele count (default <3) in the tumor are likely to be false positive
calls and are flagged as low quality. While variants with a high-alternative allele
count in the normal (default >0) are considerate to be germline mutations.

Fisher’s exact test (FET) score: mutations with a very low-FET score are flagged
as low quality. Due to their inherently different error profiles, separate thresholds
are used for non-STR variants (default <5.0) and STR variants (default <25.0).

Strand bias: this filter rejects variants where the number of alternative counts in
the forward or reverse strand is below a certain threshold (default <1).

Microsatellite: microsatellites (or short tandem repeats) are highly mutable
genetic elements subject to high rate of replication slippage events (especially
homopolymers), which reduces variant callers’ ability to distinguish between
sequencing errors and true mutations. As such, mutations located within
microsatellites or in their proximity (default 1 base pair away) are recognized and
flagged by Lancet. By default, microsatellites are defined as sequences composed of
at least 7 bp (total length), where the repeat sequence is between 1 and 4 bp, and is
repeated at least three times. The user can adjust these parameters to define any
type of microsatellite motif size and length as required by different applications.

Read alignment and BAM file generation. Sequencing reads were aligned to the
human reference hg19 using BWA-MEM (v.0.7.8-r455) with default parameters.
Alignments were converted from SAM format to sorted and indexed BAM files
with SAMtools (v.1.1). GATK software tools (v.2.7-4) were used for improving
alignments around indels (GATK IndelRealigner) and base quality recalibration
(GATK base quality recalibration tool) using recommended parameters. Finally,
the Picard tool set (v.1.119) was used to remove duplicate reads. The final BAM
files generated by this process were used as input for all the variant callers used in
this study.

Virtual tumors. We created virtual tumors using a strategy similar to what was
employed in the MuTect paper11. We sequenced HapMap sample NA12892 at high
coverage on the Illumina HiSeq X system using PCR-free protocol and partitioned
the set of reads into two groups of 80× and 40× average coverage to use as tumor
and normal, respectively. Reads were mapped using the alignment procedure

COMMUNICATIONS BIOLOGY | DOI: 10.1038/s42003-018-0023-9 ARTICLE

COMMUNICATIONS BIOLOGY |  (2018) 1:20 | DOI: 10.1038/s42003-018-0023-9 |www.nature.com/commsbio 7

www.nature.com/commsbio
www.nature.com/commsbio


described in section “Read alignment and BAM file generation”. We then used an
unrelated HapMap sample NA12891 sequenced on the same Illumina HiSeq X
system to introduce realistic SNVs and indels by swapping a predefined number of
reads between the two samples at loci where NA12892 is homozygous reference
and NA12891 is homozygous variant (Supplementary Fig. 3). The list of selected
loci is based on the 1000 Genomes Project phase 324 call set and the number N of
reads that were swapped between the two samples followed a binomial distribution
with mean μ= 0.05, 0.1, 0.2, 0.3. This procedure allowed us to spike-in realistic
mutations with known variant allele fractions, but the length of indels was limited
by the short size range currently included in the 1000 Genomes call set. Specifically,
the longest insertion and deletions that we were able to spike in were 13 bp and 35
bp, respectively. We used this process separately for SNVs and indels to create two
pairs of tumor/normal samples with 31,592 somatic SNVs and 4945 somatic indels,
respectively. The virtual tumor BAM files together with the list of true variants are
freely available for download at the New York Genome Center ftp site (ftp://ftp.
nygenome.org/lancet).

ICGC-TCGA DREAM challenge data. The BAM files for the synthetic tumor #4
from the ICGC-TCGA DREAM mutation calling challenge were downloaded from
the International Cancer Genome Consortium website (http://icgc.org), according
to the ICGC-DACO policy. To be consistent with the other datasets analyzed in
this study, we extracted all the reads (both mapped and unmapped) from the
original BAM files and realigned the data using the alignment pipeline described in
section “Read alignment and BAM file generation”.

ICGC medulloblastoma benchmarking data. We downloaded the full set of FastQ
files of the medulloblastoma patient (accession number EGAD00001001859) from
the European Genome-phenome Archive (EGA, https://www.ebi.ac.uk/ega). The
raw reads were generated by five different sequencing centers reaching a cumu-
lative coverage of ~300× for both the tumor and the normal samples. We merged
the raw FastQ files separately for the tumor and the normal samples and then
aligned the reads using the alignment pipeline described in section “Read align-
ment and BAM file generation”. Then we down-sampled the ~300× BAM files
down to ~80× and ~40× for the tumor and the normal, respectively, using the
Picard DownsampleSam module. The down-sampled BAM files generated by this
process were then used as input for all the somatic variant callers used in this study.

Primary and metastatic cancer lesions data. Sequencing data for the paired
primary and metastatic cancer lesions are publically available through the database
of Genotypes and Phenotypes (dbGaP, https://www.ncbi.nlm.nih.gov/gap) with
accession number phs000790.v1.p1. The same data is also available through the
Memorial Sloan Kettering Cancer Center cBioPortal for Cancer Genomics (study
“Colorectal Adenocarcinoma Triplets”). In this study, we used the sequencing data
for sample EV-014 and the BAM files were created following the procedure
described in section “Read alignment and BAM file generation”, with the only
difference that the normal, primary, and metastatic samples have been realigned
together (with GATK IndelRealigner) to further improve alignments around indels.

Variant calling. We tested the variant calling abilities of eight different somatic
variant callers: Lancet (v1.0.0), MuTect (v1.1.7), MuTect2 (v2.3.5), LoFreq (v2.1.2),
Strelka (v1.0.14), Strelka2 (v2.8.3), Scalpel2 (v0.5.3), and VarDict25 (v328e00a).
Although a larger number of somatic variant callers is available in the literature, we
chose to compare Lancet against these methods because they are some of the most
widely used approaches specifically designed for whole-genome tumor/normal
variant calling and they represent a combination of both assembly and alignment-
based methods. Default parameters were used for each tool. Results on the virtual
tumors revealed Scalpel and VarDict to be outliers in terms of specificity (Sup-
plementary Fig. 18), so we decided to exclude these two tools from the overall
benchmarking experiments.

Benchmarking workflow. We used the following procedure to perform the Pre-
cision/recall curve analysis employed in this study:

Step 1: First, we ran each tool with default parameters, as reported in the
“Variant calling” section.

Step 2: We kept only the PASS somatic variants within the autosomes together
with chromosomes X, Y and sorted the variant calls, from highest quality to the
lowest, according to the quality score reported by each method in the final VCF file
(“FisherScore” for Lancet, “SomaticEVS” for Strelka2, “QSI” for Strelka, “QUAL”
for LoFreq, “TLOD” for MuTect and MuTect2).

Step 3: Due to the possibly ambiguous representation of indels around
microsatellites and other simple repeats, we left normalized all the indels.

Step 4: When comparing calls to the truth set or across the different methods,
we matched two variants (SNV or indels) if they shared the same genomic
coordinates (chromosome and start position), as well as if they have the exact same
sequences (both in size and base pair composition) in the reference and alternative
alleles.

Step 5: Precision/recall values along the curve are then computed for each tool
by processing the somatic calls in the sorted order generated in step 2.

Code availability and system requirements. Lancet is written in C/C++ and is
freely available for academic and non-commercial research purposes as an open-
source software project at https://github.com/nygenome/lancet. Lancet employs
two widely used next-generations sequencing analysis APIs/libraries, BamTools
(https://github.com/pezmaster31/bamtools) and HTSlib (http://www.htslib.org/),
to read and parse the information in the BAM file, which are included in the code
distribution. The source code has no dependencies, it is easy to compile, and it runs
across different operating systems (Linux and Mac OSX). Lancet supports native
multithreading via pthreads parallelization. Analysis of one whole-genome (80×/
40×) tumor-normal pair sequenced with 150 base pair reads usually requires 3000
core hours and a minimum of 20 GB of RAM on a modern machine after splitting
the analysis by chromosome.

Data availability. Data used in this study were retrieved from the 1000 Genomes
website (http://www.1000genomes.org), the European Genome-phenome Archive
(EGA, https://www.ebi.ac.uk/ega) with accession number EGAS00001001539, the
database of Genotypes and Phenotypes (dbGaP, https://www.ncbi.nlm.nih.gov/
gap) with accession number phs000790.v1.p1, and the International Cancer Gen-
ome Consortium (ICGC, http://icgc.org/). The virtual tumors generated and ana-
lyzed in this study are freely available for download at the New York Genome
Center public ftp site (ftp://ftp.nygenome.org/lancet).
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